Welcome

Centre for Programmable Biological Matter

Biological nanomachines are fascinating nanoscale devices made from biological molecules, typically proteins, lipids, RNA and DNA. In nature they carry out an amazing array of tasks from copying DNA to converting light into energy. In our lab we are interested in understanding, designing and building natural and artificial bionanomachines. We use a mixture of biochemical, structural and computational techniques plus the most important ingredient: imagination.

For natural nanomachines, we are particularly interested in DNA gyrase both because of its fascinating and intricate mechanism but also because it is an important target for development of new antibacterial drugs. We are also building artificial structures from proteins and DNA with the aim of developing Programmable Biological Matter. This describes artificial nanoscale biological material which can be programmed to carry out tasks on demand. This will be useful for new materials and may find significant application in medicine for example in effective vaccines and smart drug delivery systems which may one day be used as disease treatments in particular for age-associated diseases.

Research Areas

Heddle Lab – Natural Nanomachines

Here we investigate topoisomerases, specifically DNA gyrase, both a fascinating nanomachine and an important target for antibacterial drugs.

Heddle Lab – Artificial Protein Nanostructures

Here we aim to build new artificial protein nanostructures not found in nature.

Heddle Lab – DNA Nanomachines

DNA is not just an information storage molecule it is also a highly programmable structural material that can be easily designed to form useful shapes and even programmable robots.

Bentham Lab – Protein Design

Utilising computational protein design and experimental structural biology to guide the bioengineering of staple crops with enhanced resistance to biotic and abiotic stresses.

Lin Lab – RNA Modification

RNA modification is a way to expand nucleotide structure diversity to fulfil different functions. In the Lin lab, we study mechanisms on how RNA modifying enzymes select their RNA targets by obtaining cryo-electron microscope structures details. This will be the basis for customised RNA modifications for bioengineering purposes.

Latest News

Check out our news page for the latest news and events

Bionano 2024

12 & 13 September 2024 Durham UniversityMain Lecture Theatre (MCS0001)Mathematics Building About the Workshop We are holding our fifth bi-annual BIONANO Meeting, but this time in the United Kingdom. This[…]

Read more

We have revealed structures of human pseudouridine synthase 3 in a complex with tRNA

Figure caption Lin and Kleemann et al. explore the molecular mechanisms that drive the specificity of human PUS3 and show that the formation of its homodimer is ultimately necessary for[…]

Read more

CPBM Team Building Event

Durham, UK — Our dynamic and innovative research group, recently concluded a successful two-day team building event. The event aimed to foster collaboration, celebrate achievements, and strengthen bonds among team members.[…]

Read more